If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+3n-1600=0
a = 1; b = 3; c = -1600;
Δ = b2-4ac
Δ = 32-4·1·(-1600)
Δ = 6409
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{6409}}{2*1}=\frac{-3-\sqrt{6409}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{6409}}{2*1}=\frac{-3+\sqrt{6409}}{2} $
| 1/6x-7=-1 | | Y-4/3-y-3/2=3+y/10-2/1 | | 14-w=256 | | 11x+9(x+1)=20(x+1)-11 | | x^2-15x54=0 | | p+7=-6 | | (2x+5)/7+3/7=-6x/5 | | 7v-2v=40 | | 17w-9w=56 | | 8m+9=7m38 | | 7x+1÷3=4/7 | | 7/2.1=3/a | | 3x+4=8+9x | | 15x^2+180x+540=0 | | -x+3=7x-4 | | +-x+3=7x-4 | | 36=y/4+17 | | 4/5-4+21/5=x | | 4(2p-3)=8 | | 2m-7÷9=5 | | 1/2x+41/2x=330 | | -10=-14z+14z | | 2k+5k=0 | | r+11÷8r=29 | | 2x^2-6x+4=24 | | 5x−12=2x+8 | | 5x^2-32x+64=0 | | 3g-8g=18 | | -3x+5x=43 | | 1/x-1/15-x=3/10 | | -3x/5x=43 | | 5m/4-3=2m/4+7 |